LOS 10 CASOS DE FACTOREO

CASOS DE FACTORIZACION

Es una técnica que consiste en la descripción de una expresión matemática (que puede ser un número, una suma, una matriz, un polinomio, etc.) en forma de producto.

Existen diferentes métodos de factorización, dependiendo de los objetos matemáticos estudiados; el objetivo es simplificar una expresión o reescribirla en términos de «bloques fundamentales», que recibe el nombre de factores, como por ejemplo un número en números primos, o un polinomio en polinomios irreducibles.
FACTOR
Se llama factores o divisores de una expresión algebraica a las expresiones algebraicas que multiplicadas entre si dan como producto la primera expresión.

Ejemplo:     
           
a(a + b) = a2 + ab
(x + 2) (x +3) = x2 + 5x + 6
(m + n) (m- n) = m2  - mn - n2

PRIMER CASO

FACTOR COMÚN MONOMIO

Es una expresión algebraica en la que se utilizan exponentes naturales de variables literales que constan de un solo término si hubiera + ó – seria binomio, un número llamado coeficiente. Las únicas operaciones que aparecen entre las letras son el producto y la potencia de exponentes naturales. Se denomina polinomio a la suma de varios monomios. Un monomio es una clase de polinomio con un único término.

Ejemplo 1

14x2 y2  - 28x3 + 56x4 = R: 14x (y - 2x + 4x2)           

Ejemplo 2

X+ x5 – x  =   R:  x3 (1 + x - x4)        

FACTOR COMÚN POLINOMIO

Primero hay que determinar el factor común de los coeficientes junto con el de las variables (la que tenga menor exponente). Se toma en cuenta aquí que el factor común no solo cuenta con un término, sino con uno.

Ejemplo 1

a(x + 1) + b(x + 1)
R:  (x + 1) (a +b)

Ejemplo 2

(3x + 2) (x + y – z) – (3x + 2) -  (x + y – 1)( 3x +2)
R: (3x + 2) (x + y – z) – (3x + 2)(1) – ( x - y +1)( 3x +2)
     (3x + 2) (x + y – z -1 –x - y + 1)
     -z ( 3x +2){\displaystyle \mathbb {Q} \subset \mathbb {A} \subset \mathbb {R} _{\rm {comp}}}

SEGUNDO CASO

FACTOR COMUN POR AGRUPACION

Se llama factor común por agrupación de términos, si los términos de un polinomio pueden reunirse en grupos de términos con un factor común diferente en cada grupo.
Cuando pueden reunirse en grupos de igual número de términos se le saca en cada uno de ellos el factor común.

Ejemplo 1

a2 + ab + ax + bx
(a2 + ab)  +  (ax + b)
a(a + b) + x(a +b)
(a + b) (a +x)

Ejemplo 2

4am3 – 12 amn – m2  + 3n
= (4am3 – 12amn) – (m2 +  3n)
=4am (m2 – 3n) – (m2 + 3n)
R: (m2 – 3n)(4am-1)

TERCER CASO

TRINOMIO CUADRADO PERFECTO

Es igual al cuadrado de un binomio. Se llama trinomio cuadrado perfecto al trinomio (polinomio de tres términos) tal que, dos de sus términos son cuadrados perfectos y el otro término es el doble producto de las bases de esos cuadrados.

Ejemplo 1

a2 – 2ab + b2
Raíz cuadrada  de a2  = a
Raíz cuadrada  de b2   = b
Doble producto sus raíces
(2 X a  X b) 2ab  (cumple)   
R: (a – b) 2

Ejemplo 2

49m 6– 70 am3n2 + 25 a2n4
Raíz cuadrada  de 49m6  = 7m3  
Raíz cuadrada  de 25a2n4  = 5an2
Doble producto sus raíces
(2 X 7m3  X  5a2n2) =  70am3 n (cumple)   
R: (7m – 5an2)

CASO ESPECIAL

Ejemplo 1

a2 + 2a (a – b) + (a – b) 2

Raíz cuadrada  de a2  = a  

Raíz cuadrada  de (a – b) 2 = (a – b)

Doble producto sus raíces

(2 X a  X  (a – b) =  2a(a – b) (cumple)   

R: (a + (a – b)) 2

    (a + a – b) = (2a –b) 2   

CUARTO CASO

DIFERENCIA DE CUADRADOS

Se identifica por tener dos términos elevados al cuadrado y unidos por el signo menos. Se resuelve por medio de dos paréntesis, (parecido a los productos de la forma), uno positivo y otro negativo. En los paréntesis deben colocarse las raíces. 
Ejemplo 1

X2 - y 2
x      y  = Raíces 
Se multiplica la suma por la diferencia
                R: = (x + y) (x- y) 

Ejemplo 2

100m2n4 - 169y6
10mn2           13y=  Raíces
Se multiplica la suma por la diferencia    
                           R: = (10mn2 + 13y3) (10mn2- 13y3)

CASO ESPECIAL

Ejemplo 1
(a - 2b)2 - (x +  y)2
  (a - 2b)      (x + y)   = Raíces 
Se multiplica la suma por la diferencia

          R: = ((a - 2b) + (x + y))  ((a - b) -  (x + y))
                  (a - 2b + x + y)   (a -2b - x - y)

Ejemplo 2

16a10 - (2a2 + 3) 2
4a5         (2a2 + 3)  =  Raíces
Se multiplica la suma por la diferencia
                                    R: = ((4a5 + (2a2 + 3))( 4a5 - (2a2 + 3))
                                   (4a5 + 2a2 + 3)(4a5 - 2a2 - 3)

QUINTO CASO

TRINOMIO CUADRADO PERFECTO POR ADICIÓN Y SUSTRACCIÓN

Algunos trinomios no cumplen las condiciones para ser trinomios cuadrados perfectos, el primer y tercer término tienen raíz cuadrada perfecta pero el de la mitad no es el doble producto de las dos raíces.
Se identifica por tener tres términos, dos de ellos son cuadrados perfectos, pero el restante hay que completarlo mediante la suma para que sea el doble producto de sus raíces, el valor que se suma es el mismo que se resta para que el ejercicio original no cambie.

Ejemplo 1

a4 +    a2 + 1
    +    a2       - a2
a4 + 2a2+ 1 - a2
(a4 + 2a2+ 1) - a2
(a2 + 1)2 - a2

R: (a2+ a + 1) (a2– a + 1)

Ejemplo 2

254 + 54a2b2 + 49b4
       + 16 a2b2             - 16 a2b2­
254 + 70a2b2 + 49b- 16 a2b2­
(254 + 70a2b2 + 49b4) - 16 a2b2­
(5a2 + 7b)2- 16 a2b2

R: (5a2 + 7b2 + 16 ab) (5a2 + 7b2- 16 ab)
     (5a2 + 16ab +7b2) (5a2 - 16 ab +7b2)

CASO ESPECIAL

FACTORAR UNA SUMA DE DOS CUADRADOS

Ejemplo 1

x4+ 64y4

x4                            + 64y4
      + 16x2y2                  - 16x2y     
x4   + 16x2y2  + 64y4     - 16x2y2

(x4   + 16x2y2  + 64y4)   - 16x2y2
(x2   +  8y2)2   - 16x2y2
R: (x2   +  8y+ 4xy)  (x2   +  8y2 - 4xy)
    (x2   + 4xy +  8y2)  (x2   - 4xy +  8y2)

Ejemplo 2

4m4 + 81n4

4m4                     + 81n4
            + 36m2n2                 - 36m2n2
4m4  + 36m2n2  + 81n4   - 36m2n2

(4m4  + 36m2n2 +81n4)   - 36m2n2

(2m2 + 9n2)- 6m2n2
R: (2m2 + 9n- 6mn) (2m2 + 9n- 36mn)
     (2m2 + 6mn + 9n2) (2m2  - 6mn + 9n2)

SEXTO CASO

TRINOMIO DE LA FORMA x2 + bx + c

Se identifica por tener tres términos, hay una lateral con exponente al cuadrado y uno de ellos es el término independiente. Se resuelve por medio de dos paréntesis, en los cuales se colocan la raíz cuadrada de la variable, buscando dos números que multiplicados den como resultado el término independiente y sumados (pudiendo ser números negativos) den como resultado el término del medio.
Que cumplen las condiciones siguientes:
• El coeficiente del primer término es 1
• El primer término es una letra cualquiera elevada al cuadrado.
• El segundo término tiene la misma letra que el primero con exponente 1 y su coeficiente es una cantidad cualquiera, positiva o negativa.
• El tercer término es independiente de la letra que aparece en el primer y segundo término y es una cantidad cualquiera, positiva o negativa.

Ejemplo 1

x2 + 7x + 10
R :( x + 5 )  ( x + 2 )

Ejemplo 2

n2 + 6n – 16  
R: ( n  +  8 )  ( n – 2 )

Ejemplo 3
a2 + 42a + 432
R: ( a + 24   )   (a   + 18  )

CASOS ESPECIALES

Ejemplo 1

X8 – 2x4 – 80
R: ( x4  – 10  )   (  x4   +  8  )

Ejemplo 2

(m – n)2 + 5(m – n) – 24

R: (( m – n) +   8 )   ((m – n)   –  3 )  

      ( m – n +   8 )   (m – n  –  3 )    

SEPTIMO CASO

TRINOMIO DE LA FORMA AX2+BX+C

Condiciones que debe cumplir un trinomio de la forma ax2+bx+c:
El primer término tiene un coeficiente mayor que 1 y tiene una letra cualquiera elevada al cuadrado.
El segundo término tiene la misma letra que el primero pero con exponente 1 y su coeficiente es una cantidad cualquiera positiva o negativa.
El tercer término es una cantidad cualquiera positiva o negativa sin ninguna letra en común con el 1 y 2 términos.

Ejemplo 1

2x2 + 3x – 2
(2) 2x2 +(2) 3x –(2) 2
= 4x2 + (2) 3x – 4

(2x +  4 )   (2x – 1 )
         2         x      1
R= (x  +  2)  (2x – 1)

Ejemplo 2

16m + 15m2 – 15
15m+ 16m – 15
15(15m2) +(15) 16m –(15) 15

= 225m2 + (15) 16m – 225
(15 m  + 25 )   ( 15 m – 9 )
               5         x        3
R= ( 3m + 5 )  ( 5m  – 3 )  

 CASOS ESPECIALES

EJEMPLO 1

20x^2 +7x -6 = (4x+3) (5x-2)
3x² + 8x – 35 = (3x - 7) (x + 5)
8. 9a² + 9ab - 18b² = (a + 2b) (a - b)
9. 4x² +17x -15 = (4x - 3) (x + 5)
10. 15x² + x - 2 = (5x + 2) (3x - 1)

OBTAVO CASO

CUBO PERFECTO DE BINOMIOS

Debemos tener en cuenta que los productos notables nos dicen que:
(a+b)3 = a2 +3a 2 b+3 a b 2 +b3 y (a-b)3 = a2-3a 2 b+3ab 2 - b3
La fórmula de arriba nos dice que para una expresión algebraica ordenada con respecto a una parte literal sea el cubo de un binomio, tiene que cumplir lo siguiente:
1. Tener cuatro términos.
2. Que el primer término y el último sean cubos perfectos.
3. Que el segundo término sea más o menos el triplo de la primera raíz cúbica elevada al cuadrado que multiplica la raíz cúbica del último término.
4. Que el tercer término sea el triplo de la primera raíz cúbica por la raíz cubica del último término elevada al cuadrado.

Ejemplo 1

a3 + 3a2 + 3a + 1
Raíz cúbica de a3 =  a
Raíz cúbica de 1   = 1
Segundo término= 3(a)2(1) = 3a2
Tercer término     = 3(a)(1)2 = 3a
R:  (a + 1)3

Ejemplo 2

64x9 – 125y12 – 240x6y+ 300x3y8
64x– 240x6y+ 300x3y– 125y12
Raíz cúbica de 64x9 = 4x3
Raíz cúbica de 125y12  = 5y4
Segundo término= 3(4x3)2(5y4) = 240x6y4
Tercer término     = 3(4x3)(5y4)2 = 300x3y8
R:  ( 4x3 – 5y4 )3

NOVENO CASO

SUMA O DIFERENCIA DE CUBOS PERFECTOS

Pasos para resolver el ejercicio:
1. Descomponemos en dos factores.
2. En el primer factor se escribe la suma o la diferencia según sea el caso, de las raíces cúbicas de los dos términos.
3. En el segundo factor se escribe la raíz del primer termino elevada al cuadrado, empezando con el signo menos y de ahí en adelante sus signos alternados (si es una suma de cubos) o con signo más (si es una diferencia de cubos) el producto de la primera raíz por la segunda, más el cuadrado de la segunda raíz.

Ejemplo 1

1 + a 
(1 + a) (12 – 1(a) +( a)2)


R:(1 + a) (1 – a + a2)

Ejemplo 2

x3 – 27 
(x – 3 ) ((x)2 + (x)3 + (3)2)
 R: (x – 3 ) (x2 + 3x + 9)

CASOS ESPECIALES

Ejemplo 1

1 + (x + y) 
(1 +(x + y) (12 – 1(x + y) +(x + y)2)

R:(1 + x + y) (1 – (x + y) + (x + y)2)
    (1 + x + y) (1 – x – y  + x2 + 2xy + y2)

Ejemplo 2

(m – 2)3  + (m – 3)3  
((m – 2) + (m – 3) ((m – 2)2 – ((m – 2) (m – 3) + (m – 3)2)

R: (m – 2+ m – 3) ((m2 – 4m + 4) – ((m – 2) (m – 3)) + (m2 – 6m  + 9))
    (2m – 5) (m2 – 4m + 4) – (m– 3m  – 2m + 6) + (m2 – 6m  + 9))
    (2m – 5) (m2 – 4m + 4– m+ 3m  + 2m – 6 + m2 – 6m  + 9)
    (2m – 5) (m2 – 5m +7)

DECIMO CASO

SUMA O DIFERENCIA DE DOS POTENCIAS IGUALES

Procedimiento:
Se aplican los siguientes criterios:
Criterios de divisibilidad de expresiones de la forma an + - bn

Criterio 1: an – bn  es divisible por a - b siendo n par o impar
Criterio 2: an – bn  es divisible por a + b siendo n impar
Criterio 3: an – bn  es divisible por a + b siendo n es par
Criterio 4: an + bn  nunca es divisible por a – b

Ejemplo 1

a5 + 1
a5 + 1    =  a4 – a3 + a2 – a + 1
 a + 1

Ejemplo 2

m7 – n7

m7 – n7    =  m6 + m5n + m4n2 + m3n3 + m2n4+ mn5 + n6
 m – n

Ejemplo 3

x7 + 128

x7 + 128    =  x6 – 2x5 + 4x4 – 8x3 +16x2  – 32x + 64
  x + 2



Comentarios

Entradas populares de este blog

CIRCUITO ELÉCTRICO BÁSICO

LA RAIZ

GRAMINEA